Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 1): 129433, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232891

RESUMO

The immunomodulatory properties of the polysaccharides (carrageenan, xylan) from Chondrus crispus (CC), Ahnfeltiopsis devoniensis (AD), Sarcodiotheca gaudichaudii (SG) and Palmaria palmata (PP) algal species were studied. Using RAW264.7 macrophages, we investigated the proliferation and migration capacity of different extracts along with their immunomodulatory activities, including nitric oxide (NO) production, phagocytosis, and secretion of pro-inflammatory cytokines. Polysaccharides from C. crispus and S. gaudichaudii effectively mitigated inflammation and improved scratch-wound healing. Polysaccharide fractions extracted under cold conditions (25 °C), including CC-1A, SG-1A and SG-1B stimulated cell proliferation, while fractions extracted under hot conditions (95 °C), including CC-3A, CC-2B and A. devoniensis (AD-3A), inhibited cell proliferation after 48 h. Furthermore, RAW264.7 cells treated with the fractions CC-3A, AD-1A, and SG-2A significantly reduced LPS-stimulated NO secretion over 24 h. Phagocytosis was significantly improved by treatment with C. crispus (CC-2B, CC-3B) and A. devoniensis (AD-3A) fractions. RAW264.7 cells treated with the CC-2A and SG-1A fractions showed elevated TGF-ß1 expression without affecting TNF-α expression at 24 h. Polysaccharide fractions of A. devoniensis (ι/κ hybrid carrageenan; AD-2A, AD-3A) showed the highest anti-coagulation activity. CC-2A and SG-1A fractions enhanced various bioactivities, suggesting they are candidates for skin-health applications. The carrageenan fractions (CC-3A: λ-, µ-carrageenan, SG-2A: ν-, ι-carrageenan) tested herein showed great potential for developing anti-inflammatory and upscaled skin-health applications.


Assuntos
Chondrus , 60578 , Rodófitas , Alga Marinha , Carragenina/farmacologia , Xilanos , Polissacarídeos/farmacologia , Alga Marinha/metabolismo , Anti-Inflamatórios/farmacologia , Anticoagulantes
2.
Mar Drugs ; 21(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233463

RESUMO

Seaweed contains a variety of bioactive compounds; the most abundant of them are polysaccharides, which have significant biological and chemical importance. Although algal polysaccharides, especially the sulfated polysaccharides, have great potential in the pharmaceutical, medical and cosmeceutical sectors, the large molecular size often limits their industrial applications. The current study aims to determine the bioactivities of degraded red algal polysaccharides by several in vitro experiments. The molecular weight was determined by size-exclusion chromatography (SEC), and the structure was confirmed by FTIR and NMR. In comparison to the original furcellaran, the furcellaran with lower molecular weight had higher OH scavenging activities. The reduction in molecular weight of the sulfated polysaccharides resulted in a significant decrease in anticoagulant activities. Tyrosinase inhibition improved 2.5 times for hydrolyzed furcellaran. The alamarBlue assay was used to determine the effects of different Mw of furcellaran, κ-carrageenan and ι-carrageenan on the cell viability of RAW264.7, HDF and HaCaT cell lines. It was found that hydrolyzed κ-carrageenan and ι-carrageenan enhanced cell proliferation and improved wound healing, whereas hydrolyzed furcellaran did not affect cell proliferation in any of the cell lines. Nitric oxide (NO) production decreased sequentially as the Mw of the polysaccharides decreased, which indicates that hydrolyzed κ-Carrageenan, ι-carrageenan and furcellaran have the potential to treat inflammatory disease. These findings suggested that the bioactivities of polysaccharides were highly dependent on their Mw, and the hydrolyzed carrageenans could be used in new drug development as well as cosmeceutical applications.


Assuntos
Cosmecêuticos , Rodófitas , Alga Marinha , Carragenina/farmacologia , Carragenina/química , Polissacarídeos/farmacologia , Alga Marinha/química , Rodófitas/química
3.
BMC Complement Med Ther ; 23(1): 26, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721189

RESUMO

BACKGROUND: Wound healing is an active, complex, integrated series of cellular, physiological, and biochemical changes initiated by the stimulus of injury in a tissue. The present study was performed to investigate the potential wound healing abilities of Sargassum ilicifolium crude extracts (CE) that were characterized by 1H NMR and FTIR Spectrometric measurements. MATERIALS AND METHODS: Seaweed samples were collected from southern coastal sites of Sri Lanka. To determine the cytotoxicity and proliferation of S. ilicifolium CE were used for the MTT and alamarBlue assays respectively. The scratch and exclusion wound models were used to HaCaT and HDF cells to assess the cell proliferation and migration. RAW 264.7 cells (macrophages) were used to evaluate Nitric Oxide (NO) production and phagocytosis activities. Moreover, Fifteen, 8-week-old, female, New Zealand rabbits were selected and divided into five groups: excision skin wounds (10.40 ± 0.60 mm) were induced in groups I, II, and III. Rabbits in groups I and IV were given S. ilicifolium CE (orally, 100 mg/kg day, two weeks), whereas groups II and V were given equal amounts of distilled water. Wound healing properties were measured and wound tissue samples were collated, formalin-fixed, wax-embedded, stained (Hematoxylin and Eosin; Van Gieson) and examined for the healing process. RESULTS: Anti-inflammatory and wound healing activities were observed in RAW 264.7, HDF and HaCaT cells treated with S. ilicifolium aqueous extracts when compared to the control groups. S. ilicifolium extracts concentration 8 - 4 µg/µL, (P<0.05) had remarkable the highest proliferative and migratory effects on RAW 264.7, HDF and HaCaT cells when compared with the control. RAW 264.7 cell proliferation and/or migration were higher in S. ilicifolium extracts (4 µg/µL, 232.8 ± 10.07%) compared with the control (100 %). Scratch wound healing were remarkably enhanced in 24 h, 48 h (P<0.05) when treated with S. ilicifolium on HaCaT cells. Rabbits treated with the CE of S. ilicifolium showed a significantly increased wound healing activities (P<0.05) within three days with a close wound area of 57.21 ± 0.77 % compared with control group (26.63 ± 1.09 %). Histopathology, aspartate aminotransferase and alanine aminotransferase levels evidenced no toxic effects on seaweed treated groups. Histopathological results also revealed that the healing process was significantly faster in the rabbit groups which were as treated with CE of S. ilicifolium orally with the evidence of enhanced early granulation tissue (connective tissue and angiogenesis) and significant epithelization compared to the control. CONCLUSIONS: Cell proliferation and migration are significantly faster when treated with S. ilicifolium aqueous extracts. Moreover, there are no toxic effect of S. ilicifolium aqueous extracts on RAW 264.7, HDF and HaCaT cell lines. In this study, it is revealed that S. ilicifolium has potential remedial agent; D-Mannitol for skin wound healing properties that by promote keratinocyte and fibroblast proliferation and migration. These findings show that S. ilicifolium have promising wound healing properties.


Assuntos
Sargassum , Feminino , Coelhos , Animais , Cicatrização , Aspartato Aminotransferases , Bioensaio , Proliferação de Células
5.
Sci Rep ; 12(1): 19610, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380074

RESUMO

Seaweed is a popular edible source and is associated with many foods and pharmaceutical industries around the world. The current research aims to provide information on the chemical composition of 15 seaweed species, consisted of Chlorophyta, Ochrophyta/Phaeophyceae, and Rhodophyta macroalgae, collected from coastal areas of Sri Lanka. Seaweed samples were subjected to the analysis of lipids, proteins, ash and macro, micro, trace and ultra-trace elements. The highest protein content was recorded in the brown algae. Maximum dietary fiber and ash contents were recorded from green algae. The highest predominant fatty acids were observed from green seaweeds (Caulerpa racemosa); however, linoleic acid (C18:2n6) is the dominant fatty acid of all macroalgae. Mineral contents were highest in the red macroalga; however, copper, zinc and magnesium were also comparatively higher in green alga Ulva lactuca. In conclusion, 15 seaweed species belonging to the three different classes of seaweeds are investigated in details to obtain their biochemical, mineral and fatty acid compositions for the synthesis of novel therapeutic agents. In order to explore biorefinery processes for these seaweeds, as well as how they can potentially be cultivated, more extensive studies are required. Studying and determining the nutritional values of seaweeds will be beneficial with the potentials for future industrial uses and research.


Assuntos
Clorófitas , Rodófitas , Alga Marinha , Oligoelementos , Alga Marinha/química , Rodófitas/química , Minerais/análise , Clorófitas/química , Oligoelementos/análise , Ácidos Graxos/análise , Verduras
6.
Sci Rep ; 12(1): 8232, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581300

RESUMO

Human envenoming from the bite of the abundant hump-nosed pit viper (Hypnale spp.) (HNPV) is a frequent occurrence with victims experiencing unpleasant and sometimes life-threatening consequences. Further, clinico-pathology, treatment and management measures in HNPV envenomed dogs are under recognized. Prospective investigations were performed to assess the clinico-pathology and management options for HNPV envenomed dogs brought to the University of Peradeniya's Veterinary Teaching Hospital from January, 2012 to March 2018. We recorded the local and systemic manifestations, hematological and urinary abnormalities of 78 dogs in which HNPV bite had been witnessed by the owner. Mild swelling, extensive swelling, hemorrhagic blistering and hemorrhagic bullae at the site of bite were observed in 59%, 31%, 6% and 4% of the dogs, respectively. Some dogs were subjected to surgical excision of necrotized tissue including limb amputation. We observed the following systemic clinical effects in envenomed dogs: neurotoxicity (13%), acute kidney injury (AKI) (14%) and coagulopathy (16%). All dogs showed leukocytosis with mean white blood cell count of 25.25 × 103/µL. Mild anemia and thrombocytopenia were detected in 29% of the dogs. There was a significant correlation between extent of local tissue injuries with length of hospitalization (LH). The mean time of coagulopathy observed was 21.3 h (IQR: 8-48 h). In coagulopathic dogs, there was a strong correlation between LH and extent of local tissue injury (rs = 0.7751, P < 0.0001); LH and whole blood clotting time(CT) (rs = 1.0, P < 0.0001); PT and aPTT (rs = 0.4712, P < 0.001). LH was significantly correlated with the development of AKI (p = 0.0013). Lack of specific antivenom (AVS) for HNPV envenoming provided an opportunity to study the remaining treatment options. Therefore, the study allowed the identification of local and systemic effects, hematological abnormalities, possible supportive treatments and drawbacks of management measures for envenomed dogs.


Assuntos
Injúria Renal Aguda , Transtornos da Coagulação Sanguínea , Crotalinae , Mordeduras de Serpentes , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Animais , Cães , Hospitais Veterinários , Hospitais de Ensino , Estudos Prospectivos , Mordeduras de Serpentes/epidemiologia , Mordeduras de Serpentes/terapia , Mordeduras de Serpentes/veterinária , Sri Lanka/epidemiologia
7.
Biochem Biophys Rep ; 26: 100986, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33869809

RESUMO

Seaweeds have been regarded as a reservoir of biologically active molecules that are important in the pharmaceutical industry. The aim of the present study was to explore the wound healing properties and to assess the safety of the seaweed Sargassum ilicifolium and Ulva lactuca. Enhanced cell proliferation and cell migration activities were observed in L929 cells treated with S. ilicifolium extract compared to U. lactuca extract treated cells and the control group. In-vivo experiments were conducted using five groups (10 in each) of Albino mice (BALB/c). Mice in group I and group II were treated (Orally, 100 mg/kg BW/day) with aqueous extracts of S. ilicifolium and U. lactuca, respectively for 14 days. Treatment group III received a topical application of the aqueous extract of S. ilicifolium (25% w/w) and ointment base (75% w/w) (2 g/kg BW/day, for 14 days). Group IV (Control) received an equal amount of distilled water, orally and mice in group V kept without wounds. The extract from S. ilicifolium showed stronger wound healing properties than the one from Ulva lactuca. Histopathological findings also revealed that the healing process was significantly enhanced in the mice group treated orally with S. ilicifolium aqueous extract. These findings show that S. ilicifolium species possess promising wound healing properties in-vitro and in-vivo.

8.
Heliyon ; 6(6): e03918, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32529057

RESUMO

BACKGROUND: Seaweeds are an important source of bioactive compounds which are applied in various aspects of medicinal investigations. The present study was conducted to investigate cytoxicity (in-vitro and in-vivo) and wound healing activity of different seaweed species in Sri Lanka. METHODS: Twenty-three seaweed samples, belonging to Phaeophyta (Brown), Chlorophyta (Green) and Rhodophyta (Red) were used for the experiments. Samples were collected from the inter-tidal and the sub-tidal habitats around Sri Lankan coast (Southern, Northern and North-western). Aqueous seaweed extracts were tested for cytotoxic and wound healing activity; in-vitro and in-vivo. To determine toxicity of aqueous seaweed extracts, brine shrimp lethality assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay on mouse fibroblasts (L929) cell line were performed. Cell migration induction of seaweed extracts was assessed by scratch wound healing assay using L929 cell line. Based on the our previous experiments S.ilicifolium (SW23) was selected for the in vivo study to confirm our hypothesis. Albino mice (BALB/c) were divided into three groups (12 in each) and a circular area (44.07 ± 02.51 mm2) of full skin was excised to create a wound in mice group II and III. Group III received aqueous extract of Sargasum illicifolium (400 mg/kg BW/day for 12 days, orally), Group II received distilled water for 12 days whereas Group I was used as the control group and it was tested without forming wounds and without providing any treatment. Further, the expression level of Tumor Necrosis Factor (TNF-α) and Transforming Growth Factor-ß (TGF-ß) via RT-PCR were measured every three days until the end of the experiment. RESULTS: Phytochemical tests showed positive results to flavonoids in all the selected green seaweeds and alkaloids were observed in red seaweeds. In the toxicity assay, red seaweed, Acanthophora spicifera (SW17) was found to be highly effective on nauplii of brine shrimp (LC50 = 0.072 µg/µl). LC50 value of green seaweed species, Caulerpa racemosa (SW02 and SW08) and Caulerpa sertularioides (SW10) was not found within the tested concentration series. The highest cytotoxic effect on L929 cell line was exhibited by aqueous extracts of red seaweed; Jania adhaereus with 50.70 ± 7.304% cell viability compared with control group. The highest cell migration activity was observed in L929 cell line group treated with extracts of green seaweed namely; Halimeda opuntin (SW07) and extracts of brown seaweed namely; Stoechospermum polypodioides (SW11). Extracts of S. illicifolium (SW23) exhibited a significantly enhanced wound healing activity in mice group III within three days (P < 0.05) with an open wound area of 17.35 ± 1.94 mm2 compared with control group (26.29 ± 2.42 mm2). TGF-ß gene expression peaked on 6th day of post-wound and subsequently decreased on 9th day of post-wound in mice group III. TNF-α expression was suppressed in mice group III whereas it was elevated in group II. TGF-ß expression is enhanced in the treatment group compared to the control group. CONCLUSIONS: Aqueous extracts of selected seaweeds are a significant source of potential compounds with wound healing properties, which might be helpful in the healing of various wounds. This also infers that many species of brown and red seaweeds have the potential of wound healing, specifically, Sargasum illicifolium and Jania adhaereus could be a potential candidate for in-vivo studies related to wound healing and cancer therapy in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...